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Abstract

Seasonal forecasting of the frequency of North Atlantic tropical storms is of inter-
est, because it can provide basic information towards improved preparation against
these storms. It has been shown that sea surface temperatures (SSTs) during the hur-
ricane season can predict tropical cyclone (TC) activity well. But predictions need
to be made before the beginning of the hurricane season, when the predictors are not
yet observed. Several climate models issue forecasts of the SSTs, which can be used
instead. Such models use the forecasts of SSTs as surrogates for the true (yet to be
observed) SSTs. In this paper, we develop a fully Bayesian negative binomial regres-
sion model, which makes a distinction between the true SSTs and their forecasts, both
of which are included in the model. For prediction, the true SSTs may be regarded
as missing /unobserved predictors and sampled from their posterior predictive distribu-
tion. Our model can simultaneously handle missing predictors and variable selection
uncertainty. If the main goal is prediction, an interesting question is: should we include
predictors in the model that are missing at the time of prediction? For our application,
numerical results suggest that there is no substantial loss in discarding such predic-
tors. Based on simulation studies and the North Atlantic tropical storms dataset, we
demonstrate that our model can provide gains in prediction, especially in the months
closer to the hurricane season.
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1 Introduction

Seasonal forecasts of TC activity for the North Atlantic region started in the early 1980s
(Gray, 1984a,b) while the very first attempt for forecasting TC activity around the world was
taken by Neville Nicholls in the late 1970s (Nicholls, 1979). Since then, the seasonal activity
of North Atlantic tropical storms has received more and more attention and previous studies
have built forecast systems which give retrospective forecasts for the hurricane season that
reaches its peak during August to October (Gray, 1984b; Elsner and Jagger, 2006; Zhao et al.,
2010). Although it is difficult to give reasonably accurate seasonal forecasts of TC activity
9 to 10 months prior to a particular season (Vecchi et al., 2014), considerable progress has
been made for shorter lead times (Elsner and Jagger, 2006; Smith et al., 2010; Vecchi et al.,
2013; Villarini and Vecchi, 2013).

In this paper, we focus on developing models for the frequency of tropical storms, which is
one of the measures of the severity of a hurricane season. Knowing in advance, whether it will
be an active season or not can help in improved preparedness. The existing literature (Vecchi
and Soden, 2007; Villarini et al., 2010) has shown that SSTs during the peak hurricane season
are good predictors of tropical storm activity. However, observed SSTs are available after
the hurricane season, and thus cannot be directly used for prediction. Instead, forecasts of
SSTs are available from multiple climate models, also known as general circulation models
(GCMs). We focus on monthly forecasts of Atlantic sea surface temperatures (S574y) and
tropical mean sea surface temperatures (SSTr,.,) by five GCMs (GFDLB01, GFDLAOG,
GFDL, NASA, CMC2) from the North American Multi-Model Ensemble Project (NMME;
Kirtman et al. (2014)).

Some of these forecasts have missing values, so we propose a two-level Bayesian regression
model. The top level models the frequency of tropical storms as the response variable with

the predicted and observed SSTs as covariates. The second level models covariates via a



sequence of regression models. Of the two levels, the top level which relates the response
variable to the covariates is of more interest, because our focus is on forecasting. Previous
studies (e.g. Villarini et al. (2019)) have shown that all climate models do not have equally
good predictive power. This motivates us to use a variable selection prior in the top level
of the model, that can automatically discriminate covariates, and retain covariates that are
supported more strongly by the data. Mitra and Dunson (2010) have developed such a
model for linear and binary regression models. In this work, we extend their approach to
a negative binomial regression model for count data. It is possible to use variable selection
priors in both the top and lower level regression models, but based on the results in Mitra
and Dunson (2010), the gain from such an approach appears to be small compared to the
increased computational burden. Thus we specify variable selection priors only for the top
level. Based on simulations and the North Atlantic TC data, we illustrate that this model can
provide improved predictive performance compared to some existing models in the literature.

The organization of this paper is as follows. In Section 2 we provide a brief review of
variable selection in a Bayesian framework. In Section 3 we provide a detailed description
of the model development, prior specification, and posterior computation. In Section 4 we
conduct two simulation studies. The simulation studies examine the predictive performance
of our Bayesian model in comparison to a hierarchical model (Villarini et al., 2019) under
different scenarios. Through these simulation studies, we also try to answer the following
important question: if a predictor is unavailable/missing for prediction, should we use a
fully Bayesian procedure that includes that predictor or should we use a reduced Bayesian
model that discards this predictor? In Section 5, we present results from applying the
different methods to data from North Atlantic tropical storms. In Section 6, we discuss

some directions for future work.



2 Review of Bayesian Approach to Variable Selection

In this section, we provide a brief introduction to Bayesian model selection and Bayesian
model averaging. For a more detailed review, see Clyde and George (2004). In a Bayesian
framework, models are treated as additional unknown parameters and they are assigned a
prior probability distribution.

In the context of variable selection in regression models, different models represent differ-
ent subsets of variables (covariates). Suppose there are p variables. Let v = (71,72,...,7)
represent a particular subset of these p variables, where v; = 1 if the variable is included

" would represent

in the model and 0 otherwise. For example, a choice of v = (1,0,...,0)
a model with the first covariate only. Each model is encoded by ~, and let the probability
distribution for the observables W be p(W | k., ) where k. is a model specific parameter.

In the Bayesian approach, we assign a prior distribution p(k | 7y) to the parameters for

each model and a prior probability, p(7) to each model. This prior formulation leads to the

following joint distribution:

P(W,ky,7y) = p(W | Kq, ¥)P(K | ¥)P(Y)- (1)

Suppose our goal is to predict a new observation Wy, which is assumed to be generated
from the same process that generated the observed data W. Then the posterior predictive

distribution of W; under model = is obtained as

p(W; | v, W) = /p(va"i"/ | v, W)dk = /p(Wf | K~,7, W)p("éfv |, W)d";’v
(2)
= /p(Wf | Ky Y)P(Ky | Y, W)dEesy.

The last equality in (2) holds because of the assumption of independence between W and

W, given the model and model specific parameters.



After marginalizing out parameters k., conditional on the observed data W, we have

the posterior probability for model ~ as

p(W | 7)p()
P IW) = W T d) 3

where
(W | ) = / (W | oy, )l | )i (4)

is called the marginal likelihood of model . To measure the importance of a covariate based
on all models, the posterior marginal inclusion probability for the jth covariate is defined as

follows:

plvy=11W)= > ply|W). (5)

yely;=1

Under Bayesian model averaging, the posterior predictive distribution of W; is given by:

p(Wy | W)= p(Wi |~ Wp(y | W), (6)

~er

which is a mixture of the conditional predictive distributions under each model, with mixture
weights given by the posterior probabilities of models.

The marginal likelihood in (4) is typically not available in closed form, except for a small
class of models with certain prior structures, like linear regression models with conjugate
priors. When it is available in closed form, posterior computation is greatly simplified. In
most cases, including our negative binomial regression model, the posterior distribution is
not available in closed form and these quantities cannot be computed analytically. However,
we can use a Markov chain Monte Carlo (MCMC) algorithm to sample approximately from
the posterior predictive distribution and estimate quantities of interest such as the posterior

inclusion probability of a covariate.



3 Bayesian Negative Binomial Regression Model With
Missing Covariates

We first introduce some notation. Let Y denote the n dimensional vector containing the
count of the tropical storms from the the National Oceanic and Atmospheric Administra-
tion’s (NOAA) National Hurricane Center’s best-track database (HURDAT?2) (Landsea and
Franklin, 2013). Let X = (x, x1,...,x,) denote the n x (p+ 1) design matrix, whose first
column is a column of ones, corresponding to the intercept term. The remaining columns
correspond to SSTsy and SSTr,,, from the climate models, as well as the true SSTy and
SSTryep from the Met Office Hadley Centre (Rayner et al., 2003).

Let M = (my,...,m,) be the n x p matrix of indicators for the p covariates (Little
and Rubin, 2002) denoting whether it is available or missing. Here m;; = 1 denotes that z;;
is observed and m;; = 0 denotes that x;; is missing. Let the observed predictor values be
denoted by Xobs = {zj,4=1,...,n,7=1,...,p: m;; = 1} and the missing predictor values
by Xmis = {zij,i=1,...,n,7=1,...,p:m;; =0}. Here we assume that the covariates
have been standardized using the observed values to have mean 0 and standard deviation
1 for the observed part of each covariate. Such standardization converts covariates to the

same scale and leads to ease in prior specification for the regression coefficients.

3.1 Negative Binomial Regression Model

The top level regression model relates the frequency of tropical storms to SSTs as predictors.
Commonly used distributions for modeling count data are Poisson or negative binomial
distributions, both of which have support over the set of non negative integers {0,1,2,...}.
While using a Poisson model could be a reasonable approach for our data, we choose the
negative binomial distribution for two reasons. First, Bayesian posterior computation is

much more amenable for a negative binomial regression model with variable selection priors,



using the Pélya Gamma data augmentation approach (Pillow and Scott, 2012). Second, a
Poisson distribution restricts the mean and variance to be the same. A negative binomial
distribution has an extra dispersion parameter that can accommodate overdispersion unlike
the Poisson model. So in our case, adopting the negative binomial model leads to more
tractable posterior computation while allowing for added flexibility.

Let X; denote the (p + 1) x 1 vector of predictors for the ith observation, and let the
corresponding response variable be Y;. Let B be a (p + 1) dimensional vector of regression
coefficients. Then the top level negative binomial regression model is given as follows:

L(Y; + 1)

W(l — 7'('7;>T]71'Z'Yi7 1= ]_,27 ...n, (7)

where m; = et /(1 + eti), u; = X3, and n > 0 is the dispersion parameter.
We assume a Gaussian prior for the intercept 5y and a spike and slab prior (George and

McCulloch, 1993) for all other regression coefficients:

50NN(07>\0)
(8)
ﬁ]N(l_p)§0+pN(Oa)‘])7 j:1727"'7p7

where ¢y is a degenerate distribution at zero. This implies that the prior for 3; is a mixed
distribution. With probability p, 3; comes from a Gaussian distribution, and with probability
(1—p), B; is exactly 0. Setting 3; = 0, allows the corresponding covariate x; to be dropped
from the model and lead to variable selection. If we let «; be an indicator variable for
including the ;™ predictor x;, such that 7; = 1 if «; is included in the model, and 0
otherwise, then {v;, = 0} = {; = 0}. We set Ay = 100 to have a reasonably diffuse prior
for the intercept term. We standardize the covariates and set \; = 1, as large values of \;
in a variable selection prior can lead to favoring the null model, without any covariates. We

choose p = 0.5 which leads to a discrete uniform prior on the space of models ~, giving



each model a prior probability of 1/2P. The dispersion parameter 1 controls the deviation
of the negative binomial distribution from the Poisson distribution, where smaller values of
1 lead to larger variance compared to the Poisson distribution. If the mean remains fixed
and n — oo, the negative binomial distribution converges to the Poisson distribution. We

assume that 7 has a uniform prior on the interval (0, 1000).

3.2 Sequence of Linear Regression Models for Covariates

Since the covariates may not be fully observed, we specify a joint distribution for the predic-
tors in the second level of the model. We adopt the method developed by Mitra and Dunson

(2010), where a joint distribution is specified using a series of univariate models:

p
p(X;) =p(za) Hp (%j | i1, - - 7%(]‘—1)) . 9)
=2
Specifically, we assume, for ¢ =1,2,...,n,

1
xip~ N (9107 ¢—) >
1

1
Tig |z ~ N (920 + 241091, —> ;

1
Tip | Tirs oo Tip1) ~ N (9p0 +210p1 + - FTip—1)Op(p—1) w—) :
p

The ordering of covariates is going to have an impact on the joint distribution. If a par-
ticular ordering is not suggested by the nature of the problem, we suggest ordering variables
by the percentage of missing values so that variables with the least missing values appear
first. Alternatively they can be ordered by their correlation with the response variable, so
that variables with the strongest correlations are modeled first, or some combination of these

strategies may be used in practice.



We put conjugate prior distributions on all regression coefficients and intercepts, i.e.,

Ao
Oio~N |0, L)
7 ( V;

>\.
ejkNN(07$>7 jzla"'7p7 k:La]_l (11)
J

We set \jo = 100 for the intercept terms. We set A, = 1 for other regression coefficients to
have the same prior variance on the standardized scale. For the residual precision parameters

we specify the following prior:
Y; ~ Gamma (c,d), j=1,---,p, (12)

where we set the shape and rate parameters as ¢ =1 and d = % respectively. This choice of

hyperparameters offers reasonably diffuse priors, when the covariates are standardized.

3.3 Posterior Computation

For the aforementioned model and prior specification, the posterior distribution does not
have a closed form. In such cases, a natural option is to use MCMC sampling, where a
Markov chain is constructed so that its stationary distribution is the posterior distribution.
Gibbs sampling, when possible, makes computation relatively straightforward as tuning is
not needed. Gibbs sampling is not immediately applicable to the above posterior distribution,
as the full conditional distributions are not available in closed form for a negative binomial
regression model.

The Pélya Gamma data augmentation approach of Pillow and Scott (2012) greatly sim-
plifies posterior computation for the negative binomial model with a Gaussian prior on the

regression coefficients. We extend their approach to spike and slab priors for regression co-



efficients, where spike refers to the degenerate distribution at 0, and slab refers to a normal
distribution. We give a brief description of this data augmentation method to show why it
simplifies posterior computation.

Following Pillow and Scott (2012), the conditional posterior distribution of 3 can be

expressed as:

(e
p(B[nX,Y) o p(ﬁ)gm (13)
x p(B)He% /00 e_wiTugp (w; | n+Y;,0) dw;, (14)

i=1 0

where the last line follows from an integral identity via which the terms in the negative
binomial likelihood can be expressed as an integral with respect to the density of a Pdlya
Gamma random variable w; ~ PG(n+Y;,0). Thus conditional on wj;, the contribution from
the likelihood terms starts to resemble a likelihood for linear regression with normal errors.
With some more algebra, Pillow and Scott (2012) have shown that the conditional posterior
distribution of 3 simplifies to a normal distribution, under a normal prior. Exploiting this
data augmentation framework, we derive full conditional distributions for spike and slab
priors, in closed form.
For our two level Bayesian model, the posterior distribution of interest is

p(n,w, B, Xmis, 0,9 | Y, Xops). Full conditionals are available for all components except
1. Thus samples can be drawn from the above posterior distribution approximately, using
a Gibbs sampler with a Metropolis Hastings (MH) step for drawing 7 (Robert and Casella,
2004). For the MH step we use a normal proposal for 1 centered at the current value, with
support over (0,1000). We outline the full conditionals for the remaining components in

Appendix A.
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4 Simulation Study

We perform a simulation study to investigate the performance of the Bayesian model in
comparison to the existing hierarchical model of Villarini et al. (2019). We first review the

different methods that were considered in that paper.

4.1 Review of Villarini et al. (2019)

Villarini et al. (2019) noted that not all climate models (GCMs) have similar predictive
power. They considered various kinds of weighting schemes to combine the forecasts of SST's
from different climate models. They first used a Poisson regression to model the count of
tropical storms based on the true/observed Atlantic sea surface temperatures (SSTyy) and
the tropical mean sea surface temperatures (SSTr,.,) respectively. Maximum likelihood
estimation was used and suppose the MLE of the 3 x 1 vector 3 is denoted as BO, where O
in the suffix denotes that this regression coefficient was estimated based on the “observed”
SSTs.

In terms of forecasts, the true SSTs during the upcoming tropical storm season are not
available, because they depend on a future event. But forecasts of these two covariates
are available from six climate models. The simplest method is to take an average over
the forecasts by the six climate models, and plug those averaged predictors in a Poisson
regression model with regression parameter BO. There is a weighted average version of this
Poisson regression model which weights the forecasts from different climate models, based
on how well they predict the real SSTs.

The final model considered by Villarini et al. (2019) is a mixture of six Poisson regression
models, with mixture components corresponding to the six climate models. The weight for
each climate model is taken as 1/RMSE, where RMSE is the root mean squared error in

predicting the response variable for that climate model. Weights are normalized over the
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six climate models to sum to 1. For prediction, the Poisson mean parameter of each climate
model is taken as exp(XZ MBO), where X o is the GCM specific forecast of SSTs. Among
the different weighting schemes, no method was always the best, but this mixture model,
called the hierarchical model, seemed to have the best performance overall.

The hierarchical model has a similar flavor to Bayesian model averaging, since predictions
are made using a mixture of models and model probabilities are related to accuracy in
prediction. Since the mixture weights and parameters are known, sampling from this model
can be done by independent Monte Carlo sampling. However, it has two main drawbacks. It
uses the observed SST's for estimation (BO) but uses the forecasts of these SST's for prediction.
The Poisson mean parameter exp(XZ . Mﬁo) used for each mixture component can lead to a
mismatch and affect predictions, if the forecasts of SST's are not good predictors of the real
SSTs. The second drawback is that the predictive distribution for the hierarchical model
assumes that the true value of 3 is known and equal to the MLE, BO. This can underestimate

uncertainty.

4.2 Data Generation

For the North Atlantic tropical storms, we have data on the frequency of storms and observed
SSTs from 1958-2018, from the HURDAT?2 database (Landsea and Franklin, 2013). As
response variable, we focus on tropical storms lasting for more than 2 days (Landsea et al.,
2010; Villarini et al., 2011) to mitigate issues related to data inhomogeneity. However, the
forecasts of SST's from six GCMs from the North American Multi Model Ensemble (Kirtman
et al., 2014), are available from 1982-2018. This means the hierarchical model which uses the
observed SSTs can use roughly twice the number of observations compared to the Bayesian
models developed in this work. Thus, we design a simulation study which maintains a similar
structure, to enable a fair comparison of different procedures.

We generate datasets of 150 observations. For each of the simulated datasets, we generate

12



the covariates from a multivariate normal distribution with mean vector g and covariance

matrix 3:
1251 0 O'% 012 e O1p
U 0 o9 03
X~MVN|p=|""|= DR R ,
O(p-1)p
s 0 Olp -+ O(p—1)p 012,
where p = 12, 0,2 = 1, fori = 1,...,12, and the off-diagonal elements of X are set as

o12=0.7,013=0.9, 014 = 0.7, 093 = 0.6, 094 = 0.7, 034 = 0.7, and o;; = 0.5 elsewhere.

This structure tries to mimic the real data to a certain extent, but in a somewhat more
simplified setting. The real data in Section 5 also has p = 12 covariates, which includes
SST forecasts from 5 GCMs and the true SSTs. Since one of the six GCMs is known to
have consistently poor predictive performance (Villarini et al., 2019), we focus on the 5
remaining GCMs in this work. Here the first two covariates are assumed to play the role
of the real/observed SSTs, (SST 4y and SSTr,p), and the next two covariates resemble the
forecasts of the same quantities from the strongest climate model in the real data.

Next we generate an outcome, Y;, using a Poisson regression model with mean exp (X I B),

and consider the following two scenarios:
1. Scenario 1: 8 =(1.8,0.4,—0.2,0.35,—0.25,0,...,0)
2. Scenario 2: 3 =(1.8,0.5,—-0.2,0,...,0)

Scenario 1 assumes that the response variable is generated using the pair of true SSTs and
a pair of strong SST forecasts. Scenario 2 assumes that the response variable is generated
solely by the true SSTs. While Scenario 2 seems more plausible, Scenario 1 is closer to
what we find in the real data. One possible explanation is that while it is known that a

difference in SSTs in the tropical Atlantic and global tropics is a driving force for formation
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of storms, there are many other factors that are not accounted for by the model in Scenario
2. The GCM forecasts themselves come from climate models that try to model the physical
processes that affect SSTs. So it is possible that the forecasts are systematically capturing
other factors that are also related to the formation of storms.

For each simulated dataset, we have 150 observations. We assume that the first two
predictors x; and x, that represent the real SSTs, are only accessible to the hierarchical
model for the first 50 observations. The other predictors @3 — x5 are not accessible to any
method, for these first 50 observations, to indicate the fact that the climate models did not
issue forecasts for the initial period in our real dataset. We split the next 100 observations
into two equal halves. The middle 50 observations of the entire 150, are accessible to all
methods (Bayesian and hierarchical) and used for estimation. The final 50 observations are
used for prediction to compare methods. For prediction, we treat x; and x5 as missing,
to represent that the true SSTs will not be available when making forecasts. We use the
same prior hyperparameters that were described in the preceding section. We conduct the

Bayesian analysis using the package R2jags in R.

4.3 Missing Covariates for Prediction

If our main goal is prediction and some of the covariates are missing/unobserved at the time
of prediction, one can envision using two approaches for dealing with the missing covariates

in a Bayesian framework:

1. Method 1: Retain all covariates in the model; sample the unobserved covariates from

their predictive distribution; and marginalize over them using Monte Carlo integration.

2. Method 2: Drop all covariates that are unavailable for prediction and consider posterior

computation with a reduced model.

We generate 100 datasets under Scenarios 1 and 2. Each dataset is analyzed using the 1)
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hierarchical model, ii) a Bayesian model without missing covariates (best case scenario), iii)
Method 1, and iv) Method 2. For the Bayesian methods, we run the MCMC algorithm for
five million iterations and discard the first 20,000 samples as burn in. Samples are drawn
from the hierarchical model using independent Monte Carlo sampling, with same sample size

of five million.

4.4 Results and Analysis

The results under Scenarios 1 and 2, averaged over 100 datasets, are presented in Tables 1
and 2. All results in these Tables are related to the predictive distribution of the response
variable. The median of the predictive distribution is used for point estimation. Its accuracy
in predicting the response variable is evaluated using correlation coefficients, RMSE, and
mean absolute error (MAE). For assessing uncertainty, we construct two kinds of prediction
sets. Approximate 90% prediction sets are constructed with end points as 5th and 95th
percentiles of the predictive distribution. These are referred to as Equal-tailed sets. We also
construct prediction sets using HPD (highest posterior density) regions, which could give
smaller sets. Since smaller sets with good coverage are desirable, we look at the cardinality
of the 90% prediction sets for the different methods, and denote it as size in Tables 1 and 2.
For this particular application, frequentist coverage is of interest, so we also assess that.

Based on the results reported in Tables 1 and 2, the RMSE and MAE of the Bayesian
methods tend to be less than that of the hierarchical method. The Bayesian methods also
have reasonably good frequentist coverage with smaller size than the hierarchical method.
The difference between Methods 1 and 2 is negligible in terms of point estimates, with very
similar RMSE and MAE. Method 1 which retains all variables tends to produce larger sets
than Method 2, which discards predictors with missing values during prediction. All methods
have frequentist coverage close to 90%.

To get an idea of the variability of the results across different datasets, notched box plots

15



(McGill et al., 1978) are shown in Figures 1 and 2. These are similar to traditional box
plots with additional information provided by the notches around the medians, for each box.
The notches provide an informal way to test whether the true (population) medians are
equal or not. If the notches of two box plots do not overlap, it indicates the true medians
are different. The notches for the hierarchical model do not overlap with notches of any of
the Bayesian methods, suggesting that the Bayesian methods have substantially improved
RMSE and MAE under both scenarios. As expected, the Bayesian method without missing
data has the smallest RMSE and MAE.

To have a better understanding of Methods 1 and 2, we examine their estimates of
posterior inclusion probabilities and regression coefficients, under Scenarios 1 and 2, reported
in Tables 3 - 4. The posterior inclusion probabilities are the same under Method 1 and the
case with no missing observations, because they have identical posteriors. In Scenario 1,
covariates 1-4 are included in the true model. Method 2 discards covariates 1-2, and thus
covariates 3-4, especially 3 seems to be doing double duty to compensate for missing covariate
1. The regression coefficient for covariate 3 seems to compensate for both 1 and 3. A similar
phenomenon is seen in Scenario 2. This partly explains why discarding covariates with
missing values during prediction, tends to do equally well as retaining those covariates.

A natural question is how sensitive the results are to the choice of prior hyperparameters.
Thus, in addition to the priors specified in 3.1 and 3.2, we consider the choice of A\; = 100,
Aji, = 100, and a gamma prior with shape parameter 2 and inverse scale (rate) parameter
1/10 on v;. The results are given in Appendix B. As summarized in Tables 11 and 12,
there is a negligible difference in the point estimates; however there is some difference in the
prediction sets which tend to get larger, due to the priors being more diffuse in the present

setting. Overall, the posterior does not seem very sensitive to these choices.
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Coverage Size

Method Cor.Pearson Cor.Spearman RMSE MAE Equaltailed HPD Equaltailed HPD
Hierarchical 0.52 0.49 3.76 2.81 0.95 0.94 17.33 14.64
No missing 0.74 0.70 3.00 2.27 0.93 0.91 10.27 9.65

Method 1 0.69 0.66 3.24 2.44 0.94 0.92 11.18 10.42

Method 2 0.70 0.67 3.18 2.40 0.91 0.90 10.22 9.48
Table 1: Simulation Scenario 1: Results related to the predictive distribution of the re-
sponse variable, under Scenario 1, when the first 4 covariates (representing real and GCM
SSTs) are included in the true Poisson regression model. Method 1 retains all covariates;
Method 2 discards the covariates with missing values. Results are averaged over 100 simu-
lated datasets.
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Figure 1: Scenario 1: Notched box plots showing RMSE/MAE of each method; results are

shown for 100 datasets.
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Coverage Size
Equal-tailed HPD Equal-tailed HPD

Method Cor.Pearson Cor.Spearman RMSE MAE

Hierarchical 0.31 0.29 3.46 2.66 0.94 0.93 14.00 12.65
No missing 0.66 0.61 2.74 2.11 0.94 0.92 9.88 9.28
Method 1 0.56 0.52 3.04 2.33 0.93 0.91 10.83 10.11
Method 2 0.56 0.53 3.03 2.33 0.92 0.89 9.92 9.31

Table 2: Simulation Scenario 2: Results related to the predictive distribution of the
response variable, under Scenario 2, when only the first 2 covariates (representing real SST's)
are included in the true Poisson regression model. Method 1 retains all covariates; Method 2
discards the covariates with missing values. Results are averaged over 100 simulated datasets.

Method Method
W B NoMissing m B3 NoMissing
s B Hierarchical g B Hierarchical
o3 B Method 1 (mpute) B3 Method 1 (mpute)

B Method 2 (Discard) B Method 2 (Discard)

2 ‘

No Missing Hierarchical Method 1 (Impute) ~ Method 2 (Discard) No Missing Hierarchical Method 1 (Impute) ~ Method 2 (Discard)
Method Method

Figure 2: Scenario 2: Notched box plots showing RMSE/MAE of each method; results are
shown for 100 datasets.
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Predictors Method 1 Method 2 No Missing

1 0.67 0.67
2 0.52 0.52
3 0.70 1.00 0.70
4 0.67 0.84 0.67
5 0.10 0.12 0.10
6 0.10 0.11 0.10
7 0.10 0.11 0.10
8 0.10 0.10 0.10
9 0.09 0.10 0.09
10 0.12 0.13 0.12
11 0.12 0.12 0.12
12 0.12 0.11 0.12

Table 3: Scenario 1: Estimates of posterior inclusion probabilities of 12 covariates; covari-
ates 1-4 were included in the true model; values > 0.75 are highlighted.
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Predictors Method 1 (Retains covariates 1 and 2) Method 2 (Discards covariates 1 and 2)

True value Mean Mean
Intercept 1.80 1.80 1.81
1 0.40 0.32 -
2 -0.20 -0.14 -
3 0.35 0.32 0.57
4 -0.25 -0.20 -0.25
5 0.00 0.00 0.00
6 0.00 0.00 0.00
7 0.00 0.00 -0.01
8 0.00 0.00 0.00
9 0.00 0.00 0.00
10 0.00 0.00 0.00
11 0.00 0.00 0.00
12 0.00 0.00 -0.04

Table 4: Scenario 1: True and estimated values of regression coefficients 3.
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Predictors Method 1 Method 2 No Missing

1 0.89 0.89
2 0.48 0.48
3 0.27 0.97 0.27
4 0.14 0.15 0.14
) 0.09 0.10 0.09
6 0.10 0.13 0.10
7 0.11 0.11 0.11
8 0.11 0.13 0.11
9 0.10 0.11 0.10
10 0.12 0.13 0.12
11 0.11 0.12 0.11
12 0.12 0.14 0.12

Table 5: Scenario 2: Estimates of posterior inclusion probabilities of 12 covariates; covari-
ates 1 and 2 were included in the true model; values > 0.75 are highlighted.
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Predictors Method 1 (Retains covariates 1 and 2) Method 2 (Discards covariates 1 and 2)

True value Mean Mean
Intercept 1.80 1.80 1.82
1 0.50 0.39 -
2 -0.25 -0.12 -
3 0.00 0.03 0.32
4 0.00 0.00 -0.01
5 0.00 0.00 0.01
6 0.00 0.00 0.00
7 0.00 0.00 0.01
8 0.00 0.00 0.00
9 0.00 0.00 0.01
10 0.00 0.00 0.00
11 0.00 0.00 0.00
12 0.00 0.00 0.00

Table 6: Scenario 2: True and estimated values of regression coefficients 3.

5 Illustration of the Methods With the North Atlantic
Tropical Storms Dataset

We have data on the frequency of tropical storms, tropical Atlantic and tropical mean SSTs,
for the period 1958-2018. TC activity occurs during August to October and SSTs are
averaged over this period to serve as predictors in our model. We consider forecasts of
SSTs for 1982-2018, from five climate prediction systems which are part of the NMME. The

Bayesian models use data from 1982-2018, for all variables, as the climate model forecasts
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do not exist prior to 1982. The non Bayesian hierarchical model, is set up in such a way,
that it uses data from 1958-2018 for estimating regression coefficients.

Data from 1982-2010 was used as a testbed when the climate prediction systems were
developed. Thus we focus on the later period 2011-2018 for prediction. Monthly forecasts
of SSTs are issued from 9-2 months before the hurricane season. Here we focus on June,
July, and August as initialization months, as the forecasts of SSTs before June can be rather
inaccurate. Given that the size of the dataset is not large, we use leave-one-out predictions
for each of the years during 2011-2018. During the period 1982-2018, there are two years with
missing forecasts for two (NASA and CMC2) of the five climate models used in the analyses.
Since the percentage of missing data is not high, we choose the ordering of covariates, in
our second level sequence of regression models, such that the normality and independence
assumptions of errors are reasonable. The names of the response variables and covariates
used in the analyses are provided in Appendix C.

For the Bayesian methods, the MCMC sampling algorithm is run for five million iterations
after discarding the first 20,000 samples as burn-in. The hierarchical model is run for five
million iterations. The same prior hyperparameters used in the simulation studies are applied
to this dataset. Analysis is done for each month separately. Note that the covariates (GCM
SSTs) change across months because forecasts of true SSTs are issued every month by the
climate prediction systems. However, the true SSTs and the count of tropical storms during
a hurricane season, for a given year, do not change across months. In other words, in
each monthly analysis, the same response variable (annual count of tropical storms during
a hurricane season) is being predicted, but a new set of covariates (GCM SSTs) is used for
each month. Thus, if a covariate is deemed to be important in a given month, say July, it
is retained in the Bayesian model for the next month, August, because important covariates
from earlier months may improve predictions.

Table 7 shows the marginal posterior inclusion probability for each covariate, by month,
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which can be used to determine whether a covariate is important or not. Under a discrete
uniform prior for the model space, the prior inclusion probability of each covariate is 0.5.

For testing 7; = 1 (jth covariate is included) versus v; = 0 (jth covariate is excluded), the

P(vi=1Y, Xops)/P(7j=0Y, Xobs)

Bayes factor P(35=1)/p(7;=0)

can be used. A value of the Bayes factor greater
than 3 provides positive evidence against 7; = 0. The Bayes factor is larger than 3 if the
corresponding marginal posterior inclusion probability is larger than 0.75. Thus we use 0.75
as the threshold for retaining a covariate in the model for the next month.

It is well known that under high collinearity among covariates, marginal inclusion proba-
bilities of correlated covariates can sometimes be misleadingly low, even though the covariates
are strongly associated with the response variable (Ghosh and Ghattas, 2015). So, there is
a danger of concluding the covariates are not needed, when in fact they are all associated
with the response variable. Ghosh and Ghattas (2015) noted that such an erroneous con-
clusion can usually be avoided by also considering the Bayes factor BF(Ha:Hy), where Hg
corresponds to the model which only contains the intercept and Hy, is the complement of
Hy. All covariates are correlated in our data, and the marginal posterior inclusion proba-
bilities for most of the variables are lower than 0.75, so we also calculate the Bayes factor
BF(Ha:Hy) for each month. The Bayes factors are 30.403 for June, 60.806 for July, and
40.537 for August. Since the Bayes factor for July is substantially larger than June and
August, it seems reasonable to not add any variables from June to July, but add important
variables from July to August. We add the GFDLAOG 44 from July to August as it has a
marginal posterior inclusion probability of 0.85. With this added variable, the Bayes factor
BF(Ha:Hy) for August increases to 60.798. The results with this additional covariate for

August are denoted by “(added)” in Table 10.
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Predictor June July August

GFDLA0Gs; — 0.64 085  0.28
GFDLAO67,, 016 020  0.20
GFDL y 0.12 0.10  0.12
GFDLr,p 014 016  0.26
GFDLBOl4; 034 035  0.33
GFDLBOl7,,, 017 019 021
NASAuy 0.27 0.6  0.16
NAS Agyp 0.27 0.17  0.20
CMC2 44 0.09 009 011

CMC270p 0.19 0.13  0.19

OBSau 024 016 0.16
OBSTrop 0.50 0.69  0.66
GFDLA0G4y,,, ~ -~  0.79

Table 7: Estimates of marginal posterior inclusion probabilities of 12 covariates for June and
July and 13 covariates for August. Values > 0.75 are highlighted.

For comparison, both approaches for handling missing covariates are presented: Method 1
retains all covariates and Method 2 discards covariates with missing/unobserved values in the
year of prediction. The results summarized in Tables 8 - 10 show that, overall, the Bayesian
methods (1 and 2) give improved predictive performance compared to the hierarchical model
(Villarini et al., 2019). Adding the GFDLA06,; covariate from July to the model in August
(“(added)” in Table 10) leads to some improvement in RMSE and MAE. The (average) size
of the prediction set tends to be larger than the hierarchical method.

A visual representation of these results is provided in Figure 3. Based on Figure 3, all
methods have the largest prediction errors in the years 2012 and 2018. In these two years, the

point estimates corresponding to the Bayesian methods with the “added” variable approach,
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improve from June to July and retain the improvement in August. The hierarchical model

tends to underestimate the uncertainty compared to the Bayesian methods. For example,

in 2012, the upper limit of the 90% prediction set for the hierarchical model, is lower than

the true count of tropical storm in June, and it coincides with the true count in July and

August.

Coverage

Size

Method Cor.Pearson Cor.Spearman RMSE MAE
Equal-tailed HPD

Equal-tailed HPD

Hierarchical 0.44 0.40 3.14 2.38 0.88 0.88 12.50 12.00
Method 1 0.45 0.34 2.78 2.00 1.00 1.00 13.75 13.13
Method 2 0.37 0.27 2.92 2.25 1.00 1.00 13.50 13.13

Table 8: Results for June
Coverage Size

Method Cor.Pearson Cor.Spearman RMSE MAE
Equal-tailed HPD

Equal-tailed HPD

Hierarchical 0.69 0.72 2.98 2.38 1.00 1.00 12.50 12.13
Method 1 0.76 0.82 1.87 1.25 1.00 1.00 14.13 13.38
Method 2 0.71 0.70 2.00 1.50 1.00 1.00 13.50 13.13

Table 9: Results for July
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Coverage Size

Method Cor.Pearson Cor.Spearman RMSE MAE
Equal-tailed HPD Equal-tailed HPD

Hierarchical 0.65 0.68 2.92 2.50 1.00 1.00 12.00 11.38
Method 1 0.87 0.93 1.77 1.38 1.00 1.00 15.25 13.88
Method 1 (added) 0.85 0.97 1.50 1.25 1.00 1.00 15.00 13.88
Method 2 0.63 0.69 2.29 1.75 1.00 1.00 15.13 13.75
Method 2 (added) 0.78 0.73 1.80 1.25 1.00 1.00 14.75 13.50

Table 10: Results for August
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Point estimates for June Point estimates for July Point estimates for August
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Figure 3: Top panel: Plots showing the observed and predicted (based on medians) counts of
tropical storms over 2011-2018. Bottom panel: Plots showing the observed counts of tropical
storms over 2011-2018, and endpoints of associated 90% prediction (HPD) sets.

6 Discussion and Future Work

In this paper, we have proposed a Bayesian negative binomial regression model that can
incorporate missing covariates and variable selection uncertainty. This model was primarily

developed to propose a fully Bayesian alternative to the hierarchical model of Villarini et al.
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(2019). Based on simulations and the North Atlantic tropical storm dataset, we have shown
that the Bayesian model can lead to better predictive performance.

We also made an attempt to answer an interesting question, whether we should retain or
discard predictors which are missing at the time of prediction. In the set up of our model, we
found both methods (retaining or discarding) perform similarly in terms of prediction using
point estimates. However, the method that retained all predictors had larger prediction sets
with somewhat higher frequentist coverage. Based on our results, predictions with a reduced
model can work fairly well and is somewhat less computationally demanding. For example,
the approximate running times needed to fit the model and predict for a single year for the
real data, are 2.6 hours, 1.6 hours, and 1 second, for Methods 1 and 2, and the hierarchical
model, respectively, on the ARGON cluster at The University of Iowa.

In this work, we have implicitly assumed that the missing data are missing at random
(MAR), that is the distribution of the missing data mechanism does not depend on the values
of the missing data. We think this is a reasonable assumption about the missing pattern
in our data. We have also assumed that the parameters governing the distribution of the
missing data mechanism are independent of the parameters in the observed data likelihood.
This leads to an ignorable missing data mechanism for Bayesian inference and inference can
be done based on the observed data likelihood and prior distributions.

Although the Bayesian methods are more time consuming, running an algorithm for 2-3
hours, once per month (when monthly forecasts of SST's are issued) does not seem daunting,.
Nevertheless, in the future, we will explore alternative methods that are faster, and try to
strike a balance between the hierarchical model and the Bayesian methods in terms of speed
of accuracy. In this paper, our focus has been on predicting the count of tropical storms,
but several other response variables are also available, such as the number of hurricanes, and
variables that measure the duration and intensity of the storms (Villarini et al., 2019). One

direction of future research is to model the response variables in a multivariate regression
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model framework, that also incorporates variable selection uncertainty and missing covari-
ates. The main question of interest in this case is whether a multivariate model will yield

better predictions than separate univariate regression models.
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Appendix A Full Conditionals
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Appendix B Sensitivity to Prior Hyperparameters

Coverage Size

Method Cor.Pearson Cor.Spearman RMSE MAE
Equal-tailed HPD Equal-tailed HPD

Hierarchical 0.52 0.49 3.76 2.81 0.95 0.94 17.33 14.63
No missing 0.73 0.69 3.03 2.29 0.93 0.91 10.38 9.78
Method 1 0.69 0.65 3.21 2.40 0.94 0.92 11.36 10.66
Method 2 0.71 0.68 3.11 2.33 0.92 0.91 10.35 9.68

Table 11: Simulation Scenario 1 Under )\; = 100, \;; = 100, and a Gamma (2, 1/10)
prior for v;: Results related to the predictive distribution of the response variable, under
Scenario 1, when the first 4 covariates (representing real and GCM SSTs) are included in
the true Poisson regression model. Method 1 retains all covariates; Method 2 discards the
covariates with missing values. Results are averaged over 100 simulated datasets.

Coverage Size

Method Cor.Pearson Cor.Spearman RMSE MAE
Equal-tailed HPD Equal-tailed HPD

Hierarchical 0.31 0.29 3.46 2.66 0.94 0.93 14.00 12.65
No missing 0.65 0.60 2.78 2.14 0.94 0.93 10.11 9.78
Method 1 0.56 0.52 3.04 2.33 0.93 0.91 10.98 10.38
Method 2 0.55 0.52 3.02 2.32 0.92 0.89 10.13 9.82

Table 12: Simulation Scenario 2 Under \; = 100, \;; = 100, and a Gamma (2, 1/10)
prior for 1; : Results related to the predictive distribution of the response variable, under
Scenario 2, when the first 2 covariates (representing real SSTs) are included in the true
Poisson regression model. Method 1 retains all covariates; Method 2 discards the covariates
with missing values. Results are averaged over 100 simulated datasets.
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Appendix C The Models Used in the Tropical Storm

Example

In this section we provide the list of models used in the analysis of the tropical storm data set.
The covariates for the second level linear regression models were chosen after careful examination
of the residual plots, to check the assumptions of normality and independence of residual errors.
The conditional regression models for the response variable and each missing predictor, for Method
1, are summarized in Tables 13 - 15, for June, July, and August. The same models were also used

for Method 2, except in June, when the model for CMC 4y had the predictors GFDLA7,,, and

GFDLryp.
Response
TS OBS ay OBSTrop NASA Ay NASAT1rop CMC sy CMCryrop
intercept intercept intercept intercept intercept intercept intercept
GFDLAsy GFDLAy GFDLA sy GFDLAsy  GFEDLAy
GFDLB sy GFDLB sy GFDLBay  GFDLBay
GFDL sy GFDL sy GFDLyy GFDL py
GFDLA7Tq, GFDLA7T, GFDLA7;oy, GFDLAT,op
GFDLBryqp GFDLB7yqp GFDLB7op GFDLBryp
GFDLryop GFDLrvoy GFDL7proyy GFDLrryy GFDL7y, GFD Lty
OBSau OBSay OBSau OBSau OBSau OBSau
OBStrop OBStrop OBSTrop OBStyop OBSTrop
NASA Ay NASAy NASAy NAS Ay
NASATrop NASATop NASA7rop
CMC2 4y CMCO2 4y
CMQC27;0p

Table 13: Models for June
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Response

TS OBSay OBS7rop CMC2yy CMC27y0p
intercept intercept intercept intercept intercept
GFDLAjy  GFDLAy GFDLAsy  GFDLAyy
GFDLBsy  GFDLByy GFDLBay  GFDLByy
GFDL gy GFDLay GFDL sy GFDL gy
NASA NASA Ay NAS A NASAay
GFDLAT;oy, GFDLATp, GFDLAT;., GFDLA7 o
GFDLBrop GFDLBrg), GFDLBtop GFDLBryp,
GFD Lty GFDLtrroy GFDLrryy GFDL7yg, GFD Lty
NASATrop NASAtrop NASATrop NASATrop

OBS 4y OBS y OBS sy
OBSrrop OBSTtyop OBSTrop
CMC2 4 CMC2ay
CMC270p

Table 14: Models for July
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Response

TS OBSay OBS7rop CMC2yy CMC27y0p
intercept intercept intercept intercept intercept
GFDLAjy  GFDLAy GFDLAsy  GFDLAyy
GFDLBsy  GFDLByy GFDLBay  GFDLByy
GFDL gy GFDLay GFDL sy GFDL gy
NASAy NASAy NASAy NASAy NASAy
GFDLAT;oy, GFDLATp, GFDLATq, NASAy
GFDLB7op GFDLBrg), GFDLBtop GFDLBryp
GFD Lty GFDLtrvoy GFDLrroy GFDL7yg, GFD Lty
NASATop NASAtrop NASATrop NASATrop
OBS a4 OBSay OBSay OBSau
OBSrrop OBSTtyop OBSt7rop
CMC2 4 CMC2ay

CMC270p
Table 15: Models for August
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